Эвклидова геометрия

Связанные определения

Под евклидовой метрикой может пониматься метрика, описанная выше, а также соответствующая риманова метрика.

Под локальной евклидовостью обычно имеют в виду то, что каждое касательное пространство риманова многообразия есть евклидово пространство со всеми вытекающими свойствами, например, возможностью (по гладкости метрики) ввести в малой окрестности точки координаты, в которых расстояние выражается (с точностью до какого-то порядка) в соответствии с описанным выше.

Метрическое пространство называют локально евклидовым также если возможно ввести на нём координаты, в которых метрика будет евклидовой (в смысле второго определения) всюду (или хотя бы на конечной области) — каковым, например, является риманово многообразие нулевой кривизны.

Псевдо-Евклид

Евклиду приписываются два важных трактата об античной теории музыки: «Гармоническое введение» («Гармоника») и «Деление канона» (лат. Sectio canonis). Традиция приписывать «Деление канона» Евклиду идёт ещё от Порфирия. В старинных рукописях «Гармоники» авторство приписывается Евклиду, некоему Клеониду, а также александрийскому математику Паппу. Генрих Мейбомrude (1555—1625) снабдил «Гармоническое введение» обстоятельными примечаниями, и вместе с «Делением канона» приписал их к трудам Евклида.

При последующем подробном анализе этих трактатов было определено, что первый написан в аристоксеновской традиции (например, в нём все полутоны считаются равными), а второй по стилю — явно пифагорейский (например, отрицается возможность деления тона ровно пополам). Стиль изложения «Гармонического введения» отличается догматизмом и непрерывностью, стиль «Деления канона» несколько схож с «Началами» Евклида, поскольку содержит теоремы и доказательства.

После критической публикации «Гармоники» знаменитым немецким филологом Карлом Яном (1836—1899) этот трактат стали повсеместно приписывать Клеониду и датировать II в. н.э. В русском переводе (с комментариями) его впервые издал Г. А. Иванов (Москве, 1894). «Деление канона» ныне одна часть исследователей считает аутентичным сочинением Евклида, а другая — анонимным сочинением в традициях Евклида. Последние по времени русские переводы «Деления канона» опубликованы (в версии Порфирия) В.Г.Цыпиным и (в версии Боэция) С.Н.Лебедевым. Критическое издание оригинального текста «Деления канона» выполнил в 1991 г. А.Барбера.

Алгоритм Евклида

Используя лемму Евклида, эта теорема утверждает, что каждое целое число больше единицы либо само по себе простое число, либо произведение простых чисел и что существует определенный порядок простых чисел.

«Если два числа, умножая одно на другое, составляют некоторое число, и любое число, которое делится на их произведение, также будет делиться на каждое из исходных чисел».

Евклидов алгоритм — эффективный метод вычисления наибольшего общего делителя (НОД) двух чисел, наибольшего числа, которое делит их оба, не оставляя остатка.

Достижения Евклида

Основная масса трудов учёного была написана по математике:

  • «Начала»;
  • «О делении фигур»;
  • «Конические сечения»;
  • «Поризмы» — о кривых линиях и условиях, их определяющих;
  • «Псевдария» — трактат об ошибках, возникающих при геометрических доказательствах.

Известны труды учёного по смежным дисциплинам – музыке, астрономии, оптике:

  • «Явления» — о практическом применении геометрии к изучению астрономии;
  • «Оптика» — о свете и законах его распространения;
  • «Катоптрика» — о зеркалах и преломлении света;
  • «Деление канона» — элементарная теория музыки.

Арабские учёные считают этого математика автором некоторых работ по механике и определению удельного веса тел.

В этом видео дополнительная и интересная информация к статье «Евклид: краткая биография, открытия, факты, видео»

Интересные факты из жизни

Несколько любопытных фактов из биографии Евклида:

  1. Самый древний известный математический трактат принадлежит Евклиду.
  2. До сих пор нет данных о месте рождения и смерти великого ученого. Однако известно место занятий Евклида примерно 2400 лет назад и место его нахождения — Александрия. Интересно, что этот городок сегодня — второй по размерам в Египте после Каира;
  3. Евклид смог создать 4 книжки по коническому виду сечений.
  4. Фундаментальный труд «Начала» считается настолько важным для науки, что до сих пор его используют в жизни. Интересно, что есть другие публикации с подобным наименованием, но самый популярный — труд Евклида».
  5. С самой юности Евклид обучался у именитого ученого Платона, обучавшего Аристотеля в Древней Греции. Сам же Платон обучался у Сократа.
  6. По традиции геометрия сегодня носит название этого ученого.
  7. Есть легенда, что когда один раз ученик величайшего математика спросил у него, как геометрия может помочь ему в жизни, то Евклид дал ему денег и прогнал с занятий.
  8. Евклид до сих пор считается автором многочисленных книг, чье авторство не было подтверждено. Это разные труды, к примеру, публикации по музыке, философии и медицине. Официально известно, что великий ученый сделал открытие в оптических и астрономических областях.
  9. Сегодня признают римановскую, лобачевскую и евклидову геометрию. Последняя — самая традиционная и часто используемая.
  10. В первый раз евклидовский труд перевели в конце восемнадцатого века. При этом «Начала» впервые были переведены на армянский язык в одиннадцатом веке.
  11. Любимая фраза: «Нет царского пути в геометрии».

В целом, Евклид является отцом геометрии, и он не случайно так называется. Он первым сделал сложное понятным и дал толчок развитию естественных наук. Его книги неоценимы по значимости и применяются сегодня в области математических и геометрических наук во всем мире.

Обобщение для более высоких измерений

Как аналитическая геометрия, евклидова геометрия может быть легко обобщена для любого (также бесконечного) числа измерений.

В дополнение к прямым линиям и плоскостям существуют линейные наборы точек более высоких измерений, которые называются гиперплоскостями. (В некотором смысле более узкого, гиперплоскость в n — мерного пространства , как «большая» , насколько это возможно, то есть, мерное подпространство.)
п{\ displaystyle n}(п-1){\ Displaystyle (п-1)}

Количество размеров не ограничено и не обязательно должно быть конечным. Для каждого кардинального числа a может быть определено евклидово пространство размерности.

Комнаты с более чем тремя измерениями принципиально недоступны нашему воображению. Они также не были созданы с целью изобразить человеческий опыт космоса. Подобно неевклидовых геометрий, ссылки на теоретической физики были также найдены здесь: Пространство — в специальной теории относительности может быть представлена в виде четырехмерного пространства. В современной космологии есть объяснительные подходы со значительно большей размерностью.

Современная аксиоматическая теория

Основная статья : Система аксиом Гильберта евклидовой геометрии

В другом смысле евклидова геометрия — это строго аксиоматическая теория , возникшая в конце XIX века . Вышеупомянутые проблемы стали очевидны, когда Бертран Рассел , Дэвид Гильберт и другие математики стали искать более строгие . Их решил Гильберт, опубликовавший результаты в своей работе « Основы геометрии» (1899 г.). Предшественниками были Герман Грассманн , Мориц Паш , Джузеппе Пеано и другие. Несколько других систем аксиом евклидовой геометрии были также установлены после Гильберта.

Подход Гильберта

Дэвид Гильберт использует «три разные системы вещей», а именно точки, линии и плоскости, о которых он говорит только: «Мы думаем (они) о нас». Об этих вещах следует «думать» в «трех основных отношениях» друг с другом, а именно «ложь», «между» и «конгруэнтность». Чтобы связать эти «вещи» и «отношения», он затем разбивает 21 аксиому на пять групп:

  • Восемь аксиом связи ( заболеваемость )
  • Четыре аксиомы расстановки ( порядок )
  • Шесть аксиом конгруэнтности ( конгруэнтности )
  • Аксиома параллелей ( аксиома параллелей )
  • Две аксиомы непрерывности ( аксиома Архимеда и аксиома полноты)

Геометрия и реальность в Гильберте

Как представитель формализма , Гильберт заявляет, что не имеет значения, какое отношение эти точки, линии и плоскости имеют к реальности. Значение основных понятий определяется тем, что они соответствуют аксиомам. Таким образом , он начинает раздел аксиом связи с предложением: «Аксиома этой группы представляет между импортируемыми выше вещей: точками, линиями и плоскостями в ссылке здесь и заключается в следующем: …» Определение основных терминов , таким образом , имеют место неявно .

С другой стороны, Гильберт объясняет во введении к своей работе: «Настоящее исследование — это новая попытка создать полную и как можно более простую систему аксиом для геометрии …». С этой ссылкой на геометрию он дает понять, что его интересует не какой-либо произвольный формализм, а спецификация того, что Евклид имел в виду под «геометрией» и что мы все знаем как свойства окружающего нас пространства. Гильберту удалось уточнить это, и оно оказалось намного сложнее, чем предполагал Евклид.

Другие системы аксиом

Установленные позже системы аксиом в основном эквивалентны системе аксиом Гильберта. Они учитывают прогресс математики.

Возможная аксиоматизация дается аксиомами абсолютной геометрии вместе со следующей аксиомой, которая эквивалентна аксиоме параллелей в предположении других аксиом абсолютной геометрии:

У каждой прямой есть своя параллель. Если две прямые параллельны третьей, то они тоже параллельны друг другу.

Краткая биография

Биография Евклида до конца не изучена, к примеру, до сих пор неизвестен год рождения. Известно, что он появился на свет в небольшом районе Афин и был платоновским учеником.

Подъем его научной работы пришелся на правление Птолемея Первого. Некоторые сведения о его жизни можно проследить по арабским рукописям и архимедовым письмам к друзьям. Так, по ним можно определить, что Евклид был сыном греческого ученого и жил около Тира в Сирии.

С малых лет получал знания о мире от своего отца, он же привил сыну любовь к естественным наукам, а затем Евклид поступил в школу Платона, где и обучился математическим основам.

Повзрослев, его пригласили в храм Мусейон (по другим данным он был одним из его основателей), в котором собирались видные ученые с поэтами. Тут были классы для занятий. Также храм был заполнен садами с башнями астрономии, помещениями для одиноких размышлений и большой библиотекой.

В Мусейоне он смог открыть школу с лучшими математиками и монументальный труд в области математики, в котором заложил планиметрические основы со стереометрией, теорией чисел, законами алгебры, методами нахождения площадей с объемами и др.

Фрагмент папируса с текстом «Начал» Евклида

Монументальный труд — публикация «Начала». Это серия из 13 книг, представляющая собой обработанные публикации древнегреческих математиков с пятого по четвертый век до нашей эры.

Кроме «Начал», было создано еще одно сочинение — «Данные», в котором были опубликованы основы по геометрическому анализу. Кроме того, александрийский ученый создал учебник, с помощью которого в то время и сейчас изучают астрономию, перспективу, отражение в зеркале, музыкальные интервалы и решают тригонометрические задачи.

Все оставшиеся годы жизни посвятил изучению естественных наук и математических законов, отчего его называют отцом геометрии. О других аспектах его жизни неизвестно до сих пор. Умер в Александрии.

Это интересно: 231,ДУХОВНАЯ КУЛЬТУРА — разбираемся внимательно

Главный труд Евклида

Главным трудом ученого является письменный памятник «Начала». Это книга, написанная примерно в 300 году до нашей эры и посвященная систематическому виду построений в геометрии.

Это вершина античной геометрии с античной математикой, в целом, которая позволила сделать дальнейшие исследования и открытия в области математики. Сборник «Начала» стоит по значимости на одном уровне с трудом Автолика.

Интересно, что труды ученого известны лишь по упоминаниям. Трактат «Начала» сильно повлиял на математическое развитие. Книгу перевели на сотни мировых языков и до сих пор используют при обучении. По своей значимости в момент издания она стояла на одном уровне с Библией.

Примеры

Евклидова норма действительного вектора равна
vзнак равно(3,-2,Шестой)∈Р.3{\ Displaystyle v = (3, -2,6) \ in \ mathbb {R} ^ {3}}

‖v‖2знак равно32+(-2)2+Шестой2знак равно9+4-й+36знак равно49знак равно7-е{\ Displaystyle \ | v \ | _ {2} = {\ sqrt {3 ^ {2} + (- 2) ^ {2} + 6 ^ {2}}} = {\ sqrt {9 + 4 + 36} } = {\ sqrt {49}} = 7}.

Евклидова норма комплексного вектора равна
vзнак равно(3,я,5-я)∈С.3{\ Displaystyle v = (3, я, 5-я) \ in \ mathbb {C} ^ {3}}

‖v‖2знак равно|3|2+|я|2+|5-я|2знак равно9+1+26-езнак равно36знак равноШестой{\ displaystyle \ | v \ | _ {2} = {\ sqrt {| 3 | ^ {2} + | i | ^ {2} + | 5-i | ^ {2}}} = {\ sqrt {9 + 1 + 26}} = {\ sqrt {36}} = 6}.

Аксиоматическая основа неевклидовой геометрии

Евклидова геометрия может быть описана аксиоматически несколькими способами. К сожалению, первоначальная система пяти постулатов (аксиом) Евклида не входит в их число, так как его доказательства опирались на несколько неустановленных предположений, которые также следовало принять в качестве аксиом. Система Гильберта, состоящая из 20 аксиом, наиболее точно следует подходу Евклида и обеспечивает обоснование всех доказательств Евклида. Другие системы, использующие разные наборы неопределенных терминов, получают ту же геометрию разными путями. Однако все подходы имеют аксиому, которая логически эквивалентна пятому постулату Евклида, постулату параллельности. Гильберт использует форму аксиомы Плейфэра, в то время как Биркгоф , например, использует аксиому, которая гласит: «Существует пара похожих, но не совпадающих треугольников». В любой из этих систем удаление одной аксиомы, эквивалентной постулату параллельности, в какой бы форме она ни принималась, и оставление всех остальных аксиом нетронутыми, дает абсолютную геометрию . Поскольку первые 28 утверждений Евклида (в «Элементах» ) не требуют использования постулата параллельности или чего-либо эквивалентного ему, все они являются истинными утверждениями в абсолютной геометрии.

Чтобы получить неевклидову геометрию, постулат параллельности (или его эквивалент) должен быть заменен его отрицанием . Отрицание формы аксиомы Playfair , поскольку это составное утверждение (… существует один и только один …), можно сделать двумя способами:

  • Либо будет существовать более одной прямой, проходящей через точку, параллельную данной прямой, либо не будет никаких прямых, проходящих через точку, параллельную данной прямой. В первом случае, заменяя постулат параллельности (или его эквивалент) утверждением «В плоскости, для данной точки P и прямой l, не проходящей через P, существуют две прямые, проходящие через P, которые не пересекаются с l » и сохраняя все остальные аксиомы дают гиперболическую геометрию .
  • Со вторым случаем справиться не так просто. Простая замена постулата параллельности утверждением: «В плоскости, если дана точка P и прямая l, не проходящая через P, все прямые, проходящие через P, пересекаются с l », не дает согласованного набора аксиом. Это следует из того, что параллельные прямые существуют в абсолютной геометрии, но это утверждение говорит об отсутствии параллельных прямых. Эта проблема была известна (в ином виде) Хайяму, Саккери и Ламберту и послужила основанием для их отказа от так называемого «случая тупого угла». Чтобы получить непротиворечивый набор аксиом, включающий эту аксиому об отсутствии параллельных прямых, необходимо изменить некоторые другие аксиомы. Эти корректировки зависят от используемой системы аксиом. Среди прочего, эти настройки имеют эффект модификации второго постулата Евклида от утверждения, что отрезки линии могут быть неограниченно продолжены, до утверждения, что линии не ограничены. Римана «с эллиптической геометрией возникает как наиболее естественной геометрии , удовлетворяющей эту аксиому.

Евклидова геометрия

Евклидова геометрия — это геометрическая теория, основанная на системе аксиом, которая была впервые изложена в третьем веке до нашей эры великим древнегреческим математиком Евклидом в грандиозном научном труде «Начала».Система аксиом Евклида базируется на основных геометрические понятиях таких, как точка, прямая, плоскость, движение, а также на следующие отношения: «точка лежит на прямой на плоскости», «точка лежит между двумя другими».В «Началах» Евклид представил следующую аксиоматику:

  • От всякой точки до всякой точки можно провести прямую.

  • Ограниченную прямую можно непрерывно продолжать по прямой.

  • Из всякого центра всяким раствором может быть описан круг.

  • Все прямые углы равны между собой.

  • Если прямая, пересекающая две прямые, образует внутренние односторонние углы, меньшие двух прямых, то, продолженные неограниченно, эти две прямые встретятся с той стороны, где углы меньше двух прямых.

Тщательное изучение аксиоматики Евклида во второй половине XIX века показало её неполноту. В 1899 году Д. Гилберт предложил первую строгую аксиоматику евклидовой геометрии. Впоследствии еще не раз ученые предпринимали попытки усовершенствовать аксиоматику евклидовой геометрии. Кроме аксиоматики Гилберта, известными считаются: аксиоматики Тарского и аксиоматики Биргофа, которая состоит всего лишь из 4 аксиом.В современной трактовке система аксиом Евклида может быть разделена на пять групп:Аксиомы сочетания.

  • Во-первых, через каждые две точки можно провести прямую и притом только одну.

  • Во-вторых, на каждой прямой лежат по крайней мере две точки. При этом существуют хотя бы три точки, которые не лежат на одной прямой.

  • В-третьих, через каждые три точки, не лежащие на одной прямой, можно провести плоскость и притом только одну.

  • В-четвертых, на каждой плоскости есть по крайней мере три точки, а также существуют хотя бы четыре точки, не лежащие в одной плоскости.

  • В-пятых, если две точки данной прямой лежат на данной плоскости, значит и сама прямая лежит на этой плоскости.

  • В-шестых, если две плоскости имеют общую точку, то, следовательно они имеют и общую прямую.

Кстати, Омар Хайям в девятом веке заметил, что Евклид в своих сочинениях доказал многое из того, что не нуждалось в доказательстве. Так появились аксиомы.

Аксиомы порядка.

  • Во-первых, если точка В лежит между А и С, то все три лежат на одной прямой.

  • Во-вторых, для каждых точек А, В существует такая точка С, что В лежит между А и С.

  • В-третьих, из трёх точек прямой только одна лежит между двумя другими.

  • В-четвертых, если прямая пересекает одну сторону треугольника, значит она пересекает при этом и другую его сторону или проходит через вершину (отрезок AB определяется как множество точек, лежащих между А и В; аналогично определяются стороны треугольника).

Аксиомы движения.

  • Во-первых, движение ставит в соответствие точкам точки, прямым прямые, плоскостям плоскости, сохраняя принадлежность точек прямым и плоскостям.

  • Во-вторых, два последовательных движения вновь дают движение, и для всякого движения есть обратное.

  • В-третьих, если даны точки А, A’ и полуплоскости A, A‘, ограниченные продолженными полупрямыми а, а’, которые исходят из точек А, A’, то существует единственное движение, переводящее А, а, A в A’, a’, A’ (полупрямая и полуплоскость легко определяются на основе понятий сочетания и порядка).

Аксиомы непрерывности.

  • Во-первых, как гласит аксиома Архимеда, всякий отрезок можно перекрыть любым отрезком, откладывая на первом его достаточное количество раз (откладывание отрезка осуществляется движением).

  • Во-вторых, согласно аксиоме Кантора: если дана последовательность отрезков, вложенных один в другой, то все они имеют хотя бы одну общую точку.

Аксиома параллельности Евклида: через точку А вне прямой а в плоскости, проходящей через А и а, можно провести лишь одну прямую, не пересекающую а. Евклидова геометрия стала результатом систематизации и обобщения наглядных представлений человека об окружающем мире.

Главная | Геометрия и искусство | Плоские фигуры | Пространственные фигуры | Движения и преобразования | Орнаменты и стили | Доклад | Разное | Галерея | Главная Карта Сайта

[править] Обозначения и терминология

Именование точек и фигур

Точки обычно называют заглавными буквами алфавита. Другие фигуры, такие как линии, треугольники или круги, именуются перечислением достаточного количества точек, чтобы однозначно выделить их из соответствующей фигуры, например, треугольник ABC обычно будет треугольником с вершинами в точках A, B и C.

Дополнительные углы

Углы, сумма которых составляет прямой угол, называются дополнительными. Дополнительные углы образуются, когда луч имеет одну и ту же вершину и направлен в направлении, которое находится между двумя исходными лучами, которые образуют прямой угол. Число лучей между двумя исходными лучами бесконечно.

Интересные факты из жизни

Несколько любопытных фактов из биографии Евклида:

  1. Самый древний известный математический трактат принадлежит Евклиду.
  2. До сих пор нет данных о месте рождения и смерти великого ученого. Однако известно место занятий Евклида примерно 2400 лет назад и место его нахождения Александрия. Интересно, что этот городок сегодня второй по размерам в Египте после Каира,
  3. Евклид смог создать 4 книжки по коническому виду сечений.
  4. Фундаментальный труд «Начала» считается настолько важным для науки, что до сих пор его используют в жизни. Интересно, что есть другие публикации с подобным наименованием, но самый популярный труд Евклида».
  5. С самой юности Евклид обучался у именитого ученого Платона, обучавшего Аристотеля в Древней Греции. Сам же Платон обучался у Сократа.
  6. По традиции геометрия сегодня носит название этого ученого.
  7. Есть легенда, что когда один раз ученик величайшего математика спросил у него, как геометрия может помочь ему в жизни, то Евклид дал ему денег и прогнал с занятий.
  8. Евклид до сих пор считается автором многочисленных книг, чье авторство не было подтверждено. Это разные труды, к примеру, публикации по музыке, философии и медицине. Официально известно, что великий ученый сделал открытие в оптических и астрономических областях.
  9. Сегодня признают римановскую, лобачевскую и евклидову геометрию. Последняя самая традиционная и часто используемая.
  10. В первый раз евклидовский труд перевели в конце восемнадцатого века. При этом «Начала» впервые были переведены на армянский язык в одиннадцатом веке.
  11. Любимая фраза: «Нет царского пути в геометрии».

В целом, Евклид является отцом геометрии, и он не случайно так называется. Он первым сделал сложное понятным и дал толчок развитию естественных наук. Его книги неоценимы по значимости и применяются сегодня в области математических и геометрических наук во всем мире.

Геометрия. Раздел математики

Раздел математики именуемый словом «геометрия» восходит к греческим «Земля» (гео) и «измерение» (метри). Как следует из названия данной дисциплины, грекам было нужно измерять элементарные природные формы. Практическое значение геометрии лежит в области землемерия и картографии, математических методов определения объема, площади и длины. Кроме этого, греческие ученые скоро поняли, что всякие формы подчиняются определенным закономерностям и правилам. Около 300 г. до н. э. греческий великий математик Евклид из Александрии собрал и детально обрисовал правила геометрии в труде «Начала», складывающемся из 13 книг. В нем он представил комплект определений, аксиом, теорем и математических доказательств, ставших основой геометрии как научной дисциплины. На изложенные в «Началах» положения опираются все математические дисциплины, развившиеся из геометрии. Вклад Евклида в математику настолько велик и глубок, что его называют «отцом геометрии».

Постулаты и аксиомы из трудов “Начала” Евклида

Многие теоремы, приведенные в «Началах», были сформулированы не Евклидом. Вклад Евклида заключался в том, дабы привести их к единому стандарту изложения и единому комплекту первоначальных предположений либо аксиом. В их число входят пять известных универсальных аксиом Евклида.

Геометрия

Универсальные аксиомы Евклида

1) величины, равные одному и тому же, равны и между собой;

2) если к равным величинам прибавляются равные, то и целые величины будут равны;

3) если от равных величин отнимаются равные, то остатки будут равны;

4) совмещающиеся (совпадающие) друг с другом величины равны между собой;

5) целое больше части.

Пять постулатов Евклида звучат более «геометрически»:

1) от всякой точки до всякой точки возможно провести участок прямой;

2) участок прямой возможно непрерывно продолжать по прямой;

3) из любой начальной точки участка прямой всяким радиусом может быть описана окружность, наряду с этим эта точка станет ее центром;

4) все прямые углы конгруэнтны (т. е. смогут быть преобразованы друг в друга);

5) если прямая, пересекающая две прямые, образует внутренние односторонние углы, меньшие двух прямых углов (равных 90°), то, продолженные неограниченно, эти две прямые встретятся с той стороны, где углы меньше двух прямых углов.

V постулат знаменит как постулат о параллельности. Позднее было доказано, что он недоказуем, что привело к появлению новых форм геометрии, основанных на другом комплекте аксиом.

Вариации и обобщения

Если в качестве основного поля использовать не поле вещественных чисел, а поле комплексных, то это даст определение унитарного (или эрмитова) пространства.

Отказ от требования конечномерности даёт определение предгильбертова пространства. Отказ от требования положительной определённости скалярного произведения приводит к определению псевдоевклидова пространства. Требование того, чтобы предгильбертово пространство было полным по метрике, ведёт к определению гильбертова пространства; пространство квадратично-суммируемых последовательностей — гильбертово пространство, которое может рассматриваться как пространство векторов с бесконечным числом координат.

Смерть

Предположительно, Евклид скончался в 260-тых годах до нашей эры. Точные причины смерти не известны. Наследие ученого пережило его на две тысячи лет и вдохновляло многих великих людей спустя столетия после его кончины. 

Существует мнение, что политический деятель Авраам Линкольн любил цитировать высказывания Евклида в своих речах и имел при себе несколько томов «Начал».

Статуя Евклида

Ученые последующих лет базировали труды на работах Евклида. Так, русский математик Николай Лобачевский использовал материалы древнегреческого мыслителя для разработки гиперболической геометрии, или геометрии Лобачевского. Формат математики, который создал Евклид, ныне известен как «евклидова геометрия». Ученый также создал прибор для определения высоты тона струны и изучал интервальные соотношения, поспособствовав созданию клавишных музыкальных инструментов.

Откуда и когда

Примечательно, что доподлинно не известно, когда именно и в каком месте родился Евклид. По скудным записям из арабских книг 12-го века можно судить, что отца его звали Наукрат, а сам будущий великий математик родился в Греции.

Предполагается, что свое образование он начал получать Академии Платона, при входе в которую, кстати, была надпись: «Никогда не войдет сюда тот, кто не знает геометрии».

Впрочем, и обстоятельства и даже точная дата смерти Евклида также покрыты тайной: предполагается, что это печальное событие произошло не позднее 265 года до нашей эры.

Это интересно: Биография и факты: Интересные факты о Сальвадоре Дали

[править] Система измерения и арифметики

Евклидова геометрия имеет два основных типа измерений: угол и расстояние. Угловая шкала является абсолютной, и Евклид использует прямой угол в качестве своей основной единицы, так что, например, угол в 45 градусов будет называться половиной прямого угла. Шкала расстояний относительна; один произвольно выбирает отрезок прямой с некоторой ненулевой длиной в качестве единицы, а другие расстояния выражаются относительно него. Сложение расстояний представлено конструкцией, в которой один линейный сегмент копируется на конец другого линейного сегмента для увеличения его длины, и аналогично для вычитания.

Измерения площади и объема производятся на основе расстояний. Например, прямоугольник шириной 3 и длиной 4 имеет площадь, представляющую произведение, 12. Поскольку эта геометрическая интерпретация умножения была ограничена тремя измерениями, не существовало прямого способа интерпретации произведения четырех или более чисел, и Евклид избегал таких произведений, хотя они подразумеваются, например, в доказательстве книги IX, предложение 20.

Евклид называет пару линий, пару плоских или твердых фигур «равными» (ἴσος), если их длина, площадь или объем равны соответственно, и аналогично для углов. Более сильный термин «конгруэнтный» относится к идее, что вся фигура имеет тот же размер и форму, что и другая фигура. В качестве альтернативы, две фигуры являются конгруэнтными, если одну можно поставить поверх другой, чтобы она точно совпала с ней (gереворачивание разрешено.) Таким образом, например, прямоугольник 2×6 и прямоугольник 3×4 равны, но не конгруэнтны, а буква R конгруэнтна своему зеркальному отображению. Фигуры, которые были бы совпадающими, за исключением различий в размерах, называются подобными. Соответствующие углы в паре одинаковых форм конгруэнтны, а соответствующие стороны пропорциональны друг другу.

Краткая биография

Биография Евклида до конца не изучена, к примеру, до сих пор неизвестен год рождения. Известно, что он появился на свет в небольшом районе Афин и был платоновским учеником.

Подъем его научной работы пришелся на правление Птолемея Первого. Некоторые сведения о его жизни можно проследить по арабским рукописям и архимедовым письмам к друзьям. Так, по ним можно определить, что Евклид был сыном греческого ученого и жил около Тира в Сирии.

С малых лет получал знания о мире от своего отца, он же привил сыну любовь к естественным наукам, а затем Евклид поступил в школу Платона, где и обучился математическим основам.

Повзрослев, его пригласили в храм Мусейон (по другим данным он был одним из его основателей), в котором собирались видные ученые с поэтами. Тут были классы для занятий. Также храм был заполнен садами с башнями астрономии, помещениями для одиноких размышлений и большой библиотекой.

В Мусейоне он смог открыть школу с лучшими математиками и монументальный труд в области математики, в котором заложил планиметрические основы со стереометрией, теорией чисел, законами алгебры, методами нахождения площадей с объемами и др.

Фрагмент папируса с текстом Начал Евклида

Монументальный труд публикация «Начала». Это серия из 13 книг, представляющая собой обработанные публикации древнегреческих математиков с пятого по четвертый век до нашей эры.

Кроме «Начал», было создано еще одно сочинение «Данные», в котором были опубликованы основы по геометрическому анализу. Кроме того, александрийский ученый создал учебник, с помощью которого в то время и сейчас изучают астрономию, перспективу, отражение в зеркале, музыкальные интервалы и решают тригонометрические задачи.

Все оставшиеся годы жизни посвятил изучению естественных наук и математических законов, отчего его называют отцом геометрии. О других аспектах его жизни неизвестно до сих пор. Умер в Александрии.

Достижения Евклида

Достижения Евклида имели огромное значение для мировой истории, математики и других наук.

Он был первым, кто:

  • систематизировал известные труды предшественников в единый сборник из 13 книг;
  • создал 5 постулатов НОД и 5 аксиом в области геометрии;
  • охарактеризовал все известные геометрические фигуры, дал понятие кривым линиям, коническим сечениям и другим явлениям;
  • создал трактат по ошибкам при изучении и создании геометрических доказательств;
  • доказал практическое использовании математики при изучении звезд, небесных тел, космоса и других наук;
  • изучил свет с законами его распространения;
  • изучил зеркала и способности преломления в них световых лучей;
  • создал простейшую теорию в области музыки;
  • создал постулаты и формулы по механики и определил удельный вес тел.

Математика

Евклид — отец математики. Он сформулировал теоремы по планиметрии, упростил понимание теоремы Пифагора и теоремы о сумме углов треугольника, прописал свойства правильных многоугольников и законы построения правильных пятнадцатиугольников, указал, как применима алгебры в жизни и каковы ее основные теории, вписал теорию о целом и рациональном числе, рассмотрел квадратичную иррациональность, заложил основы стереометрической науки, доказал теоремы, касающиеся площади круга с объемом шара, вывел отношение объема пирамид с конусами, призмами и цилиндрами.

Другие науки

Помимо математики, ученый работал с оптикой, астрономией, логикой и музыкой. Так, в оптике он дал сведения об оптической перспективе, зеркальных искажениях и отражениях световых лучей в зеркале.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector